Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 362, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403791

RESUMEN

BACKGROUND: Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount. METHODS: Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted. RESULTS: Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction. CONCLUSIONS: The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.


Asunto(s)
Fusarium , Musa , Musa/genética , Filogenia , Fusarium/genética , Clonación Molecular , Señales de Clasificación de Proteína/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
3 Biotech ; 12(9): 222, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35971335

RESUMEN

Banana is one of the major food crops and its production is subject to many pests and diseases. Banana breeding exploits wild relatives and progenitor species for the introgression of resistant genes (R) into cultivated varieties to overcome these hurdles. With advances in sequencing technologies, whole-genome sequences are available for many Musa spp. and many of them are potential donors of disease resistance genes. Considering their potential role, R genes from these species were explored to develop an user-friendly open-access database that will be useful for studying and implementing disease resistance in bananas. MusaRgene database is complemented with complete details of 3598 R genes identified from eight Musa spp. and rice, Arabidopsis, sorghum along with its classification and separate modules on its expression under various stresses in resistant and susceptible cultivars and corresponding SSRs are also provided. This database can be regarded as the primary resource of information on R genes from bananas and their relatives. R genes from other allele mining studies are also incorporated which will enable the identification of its homolog in related Musa spp. MusaRgene database will aid in the identification of genes and markers associated, cloning of full-length R genes, and genetic transformation or gene editing of the R genes in susceptible cultivars. Multiple R genes can also be identified for pyramiding the genes to increase the level of resistance and durability. Overall, this database will facilitate the understanding of defense mechanisms in bananas against biotic or abiotic stresses leading to the development of promising disease-resistant varieties.

3.
3 Biotech ; 12(4): 101, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35463044

RESUMEN

Expansin, a cell wall-modifying gene family, has been well characterized and its role in biotic and abiotic stress resistance has been proven in many monocots, but not yet studied in banana, a unique model crop. Banana is one of the staple food crops in developing countries and its production is highly influenced by various biotic and abiotic factors. Characterizing the expansin genes of the ancestor genome (M. acuminata and M. balbisiana) of present day cultivated banana will enlighten their role in growth and development, and stress responses. In the present study, 58 (MaEXPs) and 55 (MbaEXPs) putative expansin genes were identified in A and B genome, respectively, and were grouped in four subfamilies based on phylogenetic analysis. Gene structure and its duplications revealed that EXPA genes are highly conserved and are under negative selection whereas the presence of more number of introns in other subfamilies revealed that they are diversifying. Expression profiling of expansin genes showed a distinct expression pattern for biotic and abiotic stress conditions. This study revealed that among the expansin subfamilies, EXPAs contributed significantly towards stress-resistant mechanism. The differential expression of MaEXPA18 and MaEXPA26 under drought stress conditions in the contrasting cultivar suggested their role in drought-tolerant mechanism. Most of the MaEXPA genes are differentially expressed in the root lesion nematode contrasting cultivars which speculated that this expansin subfamily might be the susceptible factor. The downregulation of MaEXPLA6 in resistant cultivar during Sigatoka leaf spot infection suggested that by suppressing this gene, resistance may be enhanced in susceptible cultivar. Further, in-depth studies of these genes will lead to gain insight into their role in various stress conditions in banana. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-03106-x.

4.
Planta ; 255(4): 80, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249170

RESUMEN

MAIN CONCLUSION: Induced mutagenesis using embryogenic cell suspension (ECS) explants with toxin based screening is an effective tool to create non-chimeral Fusarium wilt resistant mutants in banana. Global proteomics unravel the molecular mechanism behind resistance. Race 1 of Fusarium wilt is a serious threat to Musa spp. cv.Rasthali (AAB, Silk subgroup) which is a choice variety traditionally grown in most of the south East Asian countries. Resistant gene introgression into susceptible varieties through conventional breeding has several limitations and the predominant ones being sterility and long generation time. Under such circumstances, induced mutagenesis combined with toxin based in vitro screening remains as the viable alternative for the development of fusarium wilt resistant Rasthali. Therefore, induced mutagenesis was attempted by using ethylmethane sulfonate (EMS) in embryogenic cell suspension (ECS) of Rasthali followed by in vitro screening for fusarium wilt resistance using new generation toxins and pot screening through challenge inoculation with Foc race 1. This ultimately resulted in the identification of 15 resistant lines. Global proteomic analysis in one of the resistant mutant lines namely NRCBRM15 and its wild type revealed 37 proteins, of which 20 showed differential expression. Out of 20 proteins, nineteen were significantly abundant in NRCBRM15 and only one was abundant in wild Rasthali. A total of nine genes based on protein expression were further validated using quantitative real time polymerase chain reaction (qRT-PCR). Annotation results revealed that some of the genes namely Enolase, ATP synthase-alpha subunit, Actin 2, Actin 3,-glucanase, UTP-glucose-1-phosphate uridylyltransferase, Respiratory burst oxidase homolog, V type proton ATPase catalytic subunit A and DUF292 domain containing protein are involved in diverse functions such as carbohydrate metabolism, energy production, electron carrier, response to wounding, binding proteins, cytoskeleton organization, extracellular region, structural molecule and defense.


Asunto(s)
Fusarium , Musa , Resistencia a la Enfermedad/genética , Fusarium/fisiología , Musa/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteómica
5.
Gene ; 821: 146334, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181501

RESUMEN

Pathogenesis related protein-1 (PR-1) is the most abundantly produced protein during defense response against many biotic and abiotic stresses. However, knowledge on PR-1 gene family and its evolutionary relationship in banana is very limited. In order to study the potential role of PR-1 genes in banana, genome wide identification, structure analysis and expressions were performed. A total of 15 and 11 PR-1 genes were identified from A and B genomes of banana and the proteins encoded by this gene family are of varying lengths and harbor conserved domains and motifs. PR-1 genes are unevenly dispersed on 11 chromosomes with segmental duplication in both A and B genome, suggesting an important contribution of duplication in expansion of PR-1 gene family in banana. qRT-PCR analysis of PR-1 gene showed positive correlation with the RNAseq data under various stresses and examination of expression pattern of selected MaPR-1 genes in banana revealed its role in biotic and abiotic stresses in general and fusarium wilt in particular. This study provides significant insight into the functions of PR-1 genes which can be further exploited as a promising candidate for developing multiple stress tolerant banana varieties.


Asunto(s)
Mapeo Cromosómico/métodos , Perfilación de la Expresión Génica/métodos , Musa/crecimiento & desarrollo , Proteínas de Plantas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Musa/genética , Filogenia , RNA-Seq , Estrés Fisiológico
6.
J Biosci ; 44(1)2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30837356

RESUMEN

Availability of transcriptome datasets for use in accelerated molecular-based breeding in Musa species is limited. Illumina Hiseq technology was employed to determine differential gene expression between the contrasting cultivars for three different stresses (Eumusae leaf spot -Mycosphaerella eumusae, root lesion nematode - Pratylenchus coffeae and moisture deficit stress) under challenged and unchallenged conditions. An average of 34.72 million of reads was assembled into ~47629 contigs, and ~5,466 simple sequence repeats (SSR) from each library were identified. GO annotation and KEGG pathway analysis were carried for all the transcripts and the SSR, SNPs were also detected. Based on this information, a MusatransSSRDB has been developed. Currently, the database consists of 32,800 SSRs with the unique information like putative function of the SSR-containing genes and their metabolic pathway and expression profiling under various stress conditions. This database provides information on in silico polymorphic SSRs (2830 SSRs) between the contrasting cultivars for each stress and within stress. Information on in silico polymorphic SSRs specific to differentially expressed genes under challenged condition for each stress can also be accessed. This database facilitates the retrieval of results by navigating the tabs for cultivars, stress and polymorphism. This database was developed using HTML, Java and PHP; datasets are stored in MySQL database and accessible in the public domain (http://bioinfnrcb.byethost7.com/nrcbbio/). This unique information facilitates the banana breeder to select the SSR primers based on specific objectives. MusatransSSRDB along with other genomics databases will facilitate the genetic dissection and breeding for complex traits in banana. Thus, this database is a step forward in economizing cost, time, manpower and other resources. Keywords.


Asunto(s)
Bases de Datos Genéticas , Genómica/tendencias , Musa/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética
7.
Front Plant Sci ; 7: 1609, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27867388

RESUMEN

In banana, drought responsive gene expression profiles of drought-tolerant and sensitive genotypes remain largely unexplored. In this research, the transcriptome of drought-tolerant banana cultivar (Saba, ABB genome) and sensitive cultivar (Grand Naine, AAA genome) was monitored using mRNA-Seq under control and drought stress condition. A total of 162.36 million reads from tolerant and 126.58 million reads from sensitive libraries were produced and mapped onto the Musa acuminata genome sequence and assembled into 23,096 and 23,079 unigenes. Differential gene expression between two conditions (control and drought) showed that at least 2268 and 2963 statistically significant, functionally known, non-redundant differentially expressed genes (DEGs) from tolerant and sensitive libraries. Drought has up-regulated 991 and 1378 DEGs and down-regulated 1104 and 1585 DEGs respectively in tolerant and sensitive libraries. Among DEGs, 15.9% are coding for transcription factors (TFs) comprising 46 families and 9.5% of DEGs are constituted by protein kinases from 82 families. Most enriched DEGs are mainly involved in protein modifications, lipid metabolism, alkaloid biosynthesis, carbohydrate degradation, glycan metabolism, and biosynthesis of amino acid, cofactor, nucleotide-sugar, hormone, terpenoids and other secondary metabolites. Several, specific genotype-dependent gene expression pattern was observed for drought stress in both cultivars. A subset of 9 DEGs was confirmed using quantitative reverse transcription-PCR. These results will provide necessary information for developing drought-resilient banana plants.

8.
Bioinformation ; 4(3): 119-22, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20198184

RESUMEN

UNLABELLED: Ginger (Zingiber officinale Rosc) (Family: Zingiberaceae) is a herbaceous perennial, the rhizomes of which are used as a spice. Ginger is a plant which is well known for its medicinal applications. Recently EST-derived SNPs are a free by-product of the currently expanding EST (Expressed Sequence Tag) databases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion/deletion) has led to a revolution in their use as molecular markers. Available (38139) Ginger EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script AutoSNP version 1.0 which has used 31905 ESTs for detecting SNPs and Indel sites. We found 64026 SNP sites and 7034 indel polymorphisms with frequency of 0.84 SNPs / 100 bp. Among the three tissues from which the EST libraries had been generated, Rhizomes had high frequency of 1.08 SNPs/indels per 100 bp whereas the leaves had lowest frequency of 0.63 per 100 bp and root is showing relative frequency 0.82/100bp. Transitions and transversion ratio is 0.90. In overall detected SNP, transversion is high when compare to transition. These detected SNPs can be used as markers for genetic studies. AVAILABILITY: The results of the present study hosted in our webserver www.spices.res.in/spicesnip.

9.
Bioinformation ; 2(4): 128-31, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-21670789

RESUMEN

The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies.

10.
Bioinformation ; 1(2): 75-7, 2005 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17597858

RESUMEN

UNLABELLED: Coconut crop improvement requires a number of biotechnology and bioinformatics tools. A database containing information on CG (coconut germplasm), CCI (coconut cultivar identification), CD (coconut disease), MIFSPC (microbial information systems in plantation crops) and VO (vegetable oils) is described. The database was developed using MySQL and PostgreSQL running in Linux operating system. The database interface is developed in PHP, HTML and JAVA. AVAILABILITY: http://www.bioinfcpcri.org.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...